Abstract

An effective strategy was demonstrated to design an electromagnetic interference (EMI) shielding paper via a facile surface treatment on paper. TEMPO-oxidized cellulose nanofibers (TOCN) were first integrated with Ti3C2Tx MXene, and subsequently cast onto a filter paper with cationic guar gum (CGG) in a sequential way. TOCN and CGG generated a self-assembling hydrogel and formed a MXene-containing hydrogel film on top of the filter paper. The hydrogel film enhanced the tensile strength (9.49 MPa) of composite paper, and resulted in a 17 % increase as compared to the control. The composite paper containing 80 mg MXene (namely, 2.07 mg·cm−2) showed a conductivity of 3843 S·m−1 and EMI shielding effectiveness (EMI SE) of 49.37 dB. Furthermore, the 2-layer assembled TC-M 80 hydrogel composite paper achieved an EMI SE of 73.99 dB. Importantly, this composite paper showed higher EMI SE and lower thickness than a lot of reported materials. The presence of TOCN and CGG also protected MXene against several solvents and the incorporation of polydimethylsiloxane (PDMS) further improved the durability of the composite paper. This work provides a novel and simple strategy to design robust, ultrathin and flexible EMI shielding materials, and it might also inspire other work in paper-based functional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call