Abstract

High-performance electromagnetic interference (EMI) shielding materials with ultrathin, flexible, and pliable mechanical properties are highly desired for high-end equipments, yet there remain large challenges in the manufacture of these materials. Here, carbon nanotube film (CNTF)/copper (Cu) nanoparticle (NP) composite films are fabricated via a facile electrodeposition method to achieve high electromagnetic shielding efficiency. Notably, a CNTF/Cu NP composite film with 15μm thickness can achieve excellent EMI shielding efficiency of ∼248 dB and absolute EMI shielding effectiveness as high as 2.17×105 dB cm2 g-1, which are the best values for composite EMI shielding materials with similar or greater thicknesses. These engineered composite films exhibit excellent deformation tolerance, which ensures the robust reliability of EMI shielding efficiency after 20,000 cycles of repeated bending. Our results represent a critical breakthrough in the preparation of ultrathin, flexible, and pliable shielding films for applications in smart, portable and wearable electronic devices, and 5G communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call