Abstract

To track a non-cooperative hypersonic glide vehicle (HGV) without any precise information, an approach to the state estimation is presented based on a robust UKF-based filter (RUKFBF) in this paper. The HGV has an uncertain reentry motion because of unknown maneuvers which is a primary factor leading to degradation of tracking accuracy. Aiming at enhancing accuracy, the strong tracking algorithm (STA) is introduced to addressing the model error caused by a bank-reversal maneuver of HGV. Furthermore, the Huber technique is employed to deal with possible measurement model errors. In the RUKFBF, mutual interferences are suppressed between the STA and the Huber technique via two strategies. The one is that the calculation of the fading factor in the STA adopts an unmodified measurement noise covariance, and the other one is that two judgment criteria are proposed to limit large fading factors in the presence of measurement model errors. To simulate real tracking scenarios, the RUKFBF is tested through tracking a HGV trajectory considering a practical guidance strategy. Simulation results demonstrate the effectiveness of the RUKFBF in the presence of model errors and the observability of the estimated state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.