Abstract

ABSTRACTThe performance of an atomic force microscope (AFM) is improved substantially by utilizing modern model‐based control methods in comparison to a standard proportional‐integral (PI) controlled AFM system. We present the design and implementation of a two‐degree‐of‐freedom (2DOF)‐controller to accomplish topography measurements at high scan‐rates with reduced measurement error. An H∞‐controller operates the AFM system in a closed loop while a model‐based feedforward controller tracks the scanner to the last recorded scan‐line. Experimental results compare the actual performance of the standard PI‐controlled AFM and the 2DOF controlled system. The new controller reduces the control error considerably and enables imaging at higher speeds and at weaker tip‐sample interaction forces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call