Abstract

In this work, a parameter tuning problem of two-degrees-of-freedom model predictive control of industrial paper-making processes is explored to achieve satisfactory time-domain robust closed-loop performance in terms of worst-case overshoots and worst-case settling times, under user-specified parametric uncertainties. An efficient visualization method is first developed to characterize the set of time-domain closed-loop responses in the presence of parametric model–plant mismatch. On the basis of the visualization technique and the unmodality/monotonicity properties of the performance indices with respect to the tuning parameters, the feasibility of the tuning problem can be analyzed, and a three-step iterative line-search based automatic tuning algorithm is proposed to determine the controller parameters that meet the time-domain performance requirements robustly for the given parametric uncertainty specifications. The effectiveness of the algorithm is illustrated by applying the results to a process from stock to conditioned weight in an industrial paper machine and by comparing the performance of the algorithm with that of brutal search.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call