Abstract
In the field of domain decomposition, the optimized Schwarz method (OSM) appears to be one of the prominent techniques to solve large scale time-harmonic wave propagation problems. It is based on appropriate transmission conditions using carefully designed impedance operators to exchange information between subdomains. The efficiency of such methods is however hindered by the presence of cross-points, where more than two subdomains abut, if no appropriate treatment is provided. In this work, we propose a new treatment of the cross-point issue for the Helmholtz equation that remains valid in any geometrical interface configuration. We exploit the multi-trace formalism to define a new exchange operator with suitable continuity and isometry properties. We then develop a complete theoretical framework that generalizes classical OSM to partitions with cross-points and contains a rigorous proof of geometric convergence, uniform with respect to the mesh discretization, for appropriate positive impedance operators. Extensive numerical results in 2D and 3D are provided as an illustration of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.