Abstract

This paper considers the joint transceiver design for downlink multiuser multiple-input single-output (MISO) systems with coordinated base stations (BSs) where imperfect channel state information (CSI) is available at the BSs and mobile stations (MSs). By incorporating antenna correlation at the BSs and taking channel estimation errors into account, we solve two robust design problems: (1) minimizing the weighted sum of mean-square-error (MSE) with per BS antenna power constraint, and (2) minimizing the total power of all BSs with per user MSE target and per BS antenna power constraints. These problems are solved as follows. First, for fixed receivers, we propose centralized and novel computationally efficient distributed algorithms to jointly optimize the precoders of all users. Our centralized algorithms employ the second-order-cone programming (SOCP) approach, whereas, our novel distributed algorithms use the Lagrangian dual decomposition, modified matrix fractional minimization and an iterative method. Second, for fixed BS precoders, the receivers are updated by the minimum mean-square-error (MMSE) criterion. These two steps are repeated until convergence is achieved. In all of our simulation results, we have observed that the proposed distributed algorithms achieve the same performance as that of the centralized algorithms. Moreover, computer simulations verify the robustness of the proposed robust designs compared to the nonrobust/naive designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.