Abstract
PurposeTrajectory tracking is an important issue to underactuated unmanned surface vehicles (USVs). However, parametric uncertainties and environmental disturbances bring great challenges to the precise trajectory tracking control of USVs. This paper aims to propose a robust trajectory tracking control algorithm with exponential stability for underactuated USVs with parametric uncertainties and unknown environmental disturbances.Design/methodology/approachIn this method, the backstepping method and sliding mode control method are combined to ensure that the underactuated USV can track and maintain the desired trajectory. In addition, a modified switching-gain adaptation algorithm is adopted to enhance the robustness and reduce chattering. Besides, the global exponential stability of the closed-loop system is proved by Lyapunov’s direct method.FindingsThe proposed method in this paper offers a robust trajectory tracking solution to underactuated USVs and it is verified by simulations and experiments. Compared with the traditional proportion-integral-derivative method and several state-of-the-art algorithms, the proposed method has superior performance in simulation and experimental results.Originality/valueThis paper proposes a robust trajectory tracking control algorithm with exponential stability for underactuated USVs. The proposed method achieves exponential stability with better robustness and transient performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Industrial Robot: the international journal of robotics research and application
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.