Abstract

Non-holonomic wheeled mobile robots (WMRs) are highly uncertain, multi-input multi-output (MIMO), non-linear dynamic systems that are expected to perform under varying environment and structural reservations. An Adaptive Fractional Order Parallel Fuzzy Proportional-Integral-Derivative (AFO−PFPID) controller is proposed and investigated on WMR to meet the above challenges. Computer simulations were carried out under the effects of dynamic parameter variations, noise, forced displacement, time delay, and uncertainty in the pose to thoroughly assess the controller's performance. Further, to evaluate its relative assessment, the AFO−PFPID controller's performance is compared with its integer counterpart Adaptive Integer Order Parallel Fuzzy Proportional-Integral-Derivative (AIO−PFPID) controller. Both the controllers were tuned with the Multi-Objective Grey Wolf Optimization Algorithm to minimize the positional and velocity profile errors with an overall goal to attain effective trajectory tracking. Though both the controllers effectively performed tracking goals, the AFO−PFPID controller has offered a significantly robust performance even under the model uncertainties and disturbances. Therefore, based on the presented investigations, it is concluded that the AFO−PFPID controller is a superior control technique for non-holonomic WMRs trajectory tracking application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.