Abstract
The robotic arm is a complicated system with multiple inputs and outputs, strong coupling, containing uncertainties and nonlinearities. This study proposes a new practical robust control method based on the dynamics model and tracking error, including a model- and error-based proportional-differential feedback term and an error-based robust term. Specifically, the dynamics of the system are modeled using the Lagrangian method. Uncertainties are presumed to be time-varying but limited. Based on the Lyapunov method, the proposed controller has theoretically demonstrated the controlled system with uniform boundedness (UB) and uniform ultimate boundedness (UUB). Furthermore, the radius of the ultimately bounded hypersphere is arbitrarily small based on selecting appropriate design parameters. Based on the two-degree-of-freedom (2-DOF) planar robotic arm experimental platform, the self-developed rapid controller prototype CSPACE-RT is intended to eliminate tedious programming or debugging, significantly simplifying the experimental process. Finally, numerical simulation and experiment results verified the excellent control performance of the suggested controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.