Abstract
A robust superimposed training sequence design is proposed for spatially correlated multiple-input-multiple-output (MIMO) channel estimation. The proposed scheme does not require accurate knowledge of the spatial correlation matrix, and it is shown to outperform previously proposed robust correlated MIMO channel estimators, such as relaxed minimum mean square error (RMMSE) and least-square RMMSE. Since the training sequence is overlaid into the data stream, the spectral efficiency of the system is higher than those that use time-multiplexed pilots. A solution for the sequence can easily be obtained by using a projection on convex-set-based iterative algorithm that is guaranteed to converge as long as the training sequence matrix is initialized to have full rank. Furthermore, it is shown that the proposed scheme is identical to the RMMSE-based schemes when the MIMO channel is spatially uncorrelated. The computational complexity of the proposed algorithm is also illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.