Abstract

A robust control design for high performance joint trajectory tracking of a flexible lightweight manipulator system is proposed. The design is based on a combined controller-observer scheme involving the sliding manifold approach and the optimal interpolation technique. This controller provides the designer with an enhanced joint tracking performance when the system is subject to parametric variations due to structural disturbances caused by link flexibility and load uncertainties. The parametric variations are handled by sliding control and the estimation of the nonlinearly excited elastic dynamics by an optimal interpolator of the structure's dynamic responses. The design procedure is progressive, i.e., we start with a basic controller and then modify it in order to improve the performance. Closed loop simulations with the various designed controllers are used to validate the analytical results and to help choosing the most suitable one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.