Abstract
A robust tracking control design of robot systems including motor dynamics with parameter perturbation and external disturbance is proposed in this study via adaptive fuzzy cancellation technique. A minimax controller equipped with a fuzzy-based scheme is used to enhance the tracking performance in spite of system uncertainties and external disturbance. The design procedure is divided into three steps. At first, a linear nominal robotic control design is obtained via model reference tracking with desired eigenvalue assignment. Next, a fuzzy logic system is constructed and then tuned to eliminate the nonlinear uncertainties as possibly as it can to enhance the tracking robustness. Finally, a minimax control scheme is specified to optimally attenuate the worst-case effect of both the residue due to fuzzy cancellation and external disturbance to achieve a minimax tracking performance. In addition, an adaptive fuzzy-based dynamic game theory is introduced to solve the minimax tracking problem. The proposed method is appropriate for the robust tracking design of robotic systems with large parameter perturbation and external disturbance. A simulation example of a two-link robotic manipulator driven by DC motors is also given to demonstrate the effectiveness of proposed design method's tracking performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.