Abstract

This paper proposes a method for robust tracking control synthesis of dual-active-bridge (DAB) DC–DC converters with parameter uncertainties and input saturation. In the proposed method, the nonlinear function of the phase shift ratio is expressed as a control input, and the phase shift ratio is determined by the one-to-one relationship with the control input. Especially, the proposed method is developed with consideration of the input saturation phenomenon that occurs physically in the phase shift ratio of DAB DC–DC converters. Furthermore, based on the proposed method, a set of exponential constrained stabilization conditions for DAB DC–DC converter systems with parameter uncertainties is provided to ensure a fast convergence rate. Finally, to verify the effectiveness of the proposed control method, various simulation results are provided and compared with the well-known improved model phase shift control (IMPSC) and load current feedforward (LCFF) control methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.