Abstract

This paper presents a robust control strategy for an electric vehicle's three-phase off-board bidirectional AC-DC battery charger. The conventional constant current (CC) and constant voltage (CV) charging mode are considered to provide a fast-charging performance for the batteries. The bidirectional charger also allows using of the vehicle as an energy storage system for the grid i.e., charging during the peak-off times and delivering the energy back to the grid during peak times of electrical consumption. In discharging mode, the bidirectional charger maintains constant active power flow to the grid with a given reference. For both cases, user of a robust state feedback controller with integral action is made in the DQ-synchronous frame. The set of stabilizing gains of this controller are determined by a linear matrix inequality (LMI)-based optimization so that the convergence time to steady stead is minimized in the occurrence of the parametric uncertainties of the L-filter. The efficacy of the proposed controller is verified through simulation and experimental results on 102.4 V Lithium iron phosphate (LiFePO4) batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.