Abstract

This paper focuses on the problem of tracking control for vehicle lateral dynamic systems and designs an adaptive robust controller (ARC) based on backstepping technology to improve vehicle handling and stability, in the presence of parameter uncertainties and external nonlinearities. The main target of controller design has two aspects: the first target is to control the sideslip angle as small as possible, and the second one is to keep the real yaw rate tracking the desired yaw rate. In order to compromise the two indexes, the desired sideslip angle is planned as a new reference signal, instead of the ideal “zero.” As a result, the designed controller not only accomplishes the control purposes mentioned above, but also effectively attenuates both the changes of vehicle mass and the variations of cornering stiffness. In addition, to overcome the problem of “explosion of complexity” caused by backstepping method in the traditional ARC design, the dynamic surface control (DSC) technique is used to estimate the derivative of the virtual control. Finally, a nonlinear vehicle model is employed as the design example to illustrate the effectiveness of the proposed control laws.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.