Abstract

To handle the tracking control problem of the magnetic wheeled mobile robot (MWMR), this paper developed an online robust tracking control scheme by adaptive dynamic programming (ADP). The problem, that how to achieve optimal tracking control of continuous-time (CT) MWMR system with the time-varying unknown uncertainty, can be solved indirectly through matching the optimal tracking control of the associated nominal system . A single critic NN-based actor-critic structure is tailored for simpler controller architecture. By minimizing the Bellman error with gradient descending and least-squares updating laws, the critic NN weights can be optimized online. Thus the optimal cost function and the optimal control signal can be approximated with high precision. Using the Lyapunov stability theorem, the convergence of the critic NN weights, and the stability of the closed-loop system is provided. Simulations, in comparison with robust PD control and adaptive control, are presented to illustrate the effectiveness of the proposed tracking control method for the MWMR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.