Abstract

This paper presents a robust topology optimization (RTO) framework for thermoelastic hierarchical structures with hybrid uncertainty. Firstly, the thermoelastic concurrent optimization model is established and the uncertainties with interval random parameters are integrated into the thermoelastic hierarchical structure. Then, a reliable and cost-effective hybrid uncertainty perturbation analysis method (HUPAM) is derived for a quick estimate of the robust objective function subject to the mechanical and thermal loads. Finally, by calculating the design variables sensitivities of macroscale and microscale, the robust topological design can be generated efficiently. To obtain clear and optimal topologies for both macro- and micro- structures, the bi-directional evolutionary structural optimization (BESO) method is adopted. Some 2D and 3D numerical examples are presented to demonstrate the influences of the hybrid uncertainties on the final designs. The results also show that the proposed method can effectively improve the thermoelastic structural performance when it comes to uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.