Abstract

Fabrication of new antibacterial surfaces has become a primary strategy for preventing device-associated infections (DAIs). Although considerable progress has recently been made in reducing DAIs, current antibacterial coating methods are technically complex and do not allow selective bacterial killing. Here, we propose novel anti-infective surfaces made of a cross-linked ionic polymer film that achieve selective bacteria killing while simultaneously favoring the survival of mammalian cells. A one-step polymerization process known as initiated chemical vapor deposition was used to generate a cross-linked ionic polymer film from 4-vinylbenzyl chloride and 2-(dimethylamino) ethyl methacrylate monomers in the vapor phase. In particular, the deposition process produced a polymer network with quaternary ammonium cross-linking sites, which provided the surface with an ionic moiety with an excellent antibacterial contact-killing property. This method confers substrate compatibility, which enables various materials to be coated with ionic polymer films for use in medical implants. Moreover, the ionic polymer-deposited surfaces supported the healthy growth of mammalian cells while selectively inhibiting bacterial growth in coculture models without any detectable cytotoxicity. Thus, the cross-linked ionic polymer-based antibacterial surface developed in this study can serve as an ideal platform for biomedical applications that require a highly sterile environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call