Abstract

A new technique for text-independent speaker recognition for noisy speech is presented. This technique is based on finding the ratio of the singular values of the feature vectors of the unknown speaker and each of the N reference features stored in the constructed database. The ith reference feature that gives the largest ratio is considered the feature of the unknown speaker.An overall correct recognition accuracy of 94% for clean speech and 32% for noisy speech of 0 dB SNR was obtained. A further step was conducted to enhance the noisy features by series expansion. The improvement in the recognition rate using the proposed SVD-based algorithm is compared with other distance measure algorithms. It is found that the proposed technique when cepstral features are used outperforms the conventional matching measure such as the Euclidean, the Weighted and the Mahalonobis distances, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.