Abstract

AbstractIn this article, we introduce a nonconvex tensor recovery approach, which employs the powerful ket augmentation technique to expand a low order tensor into a high‐order one so that we can exploit the advantage of tensor train (TT) decomposition tailored for high‐order tensors. Moreover, we define a new nonconvex surrogate function to approximate the tensor rank, and develop an auto‐weighted mechanism to adjust the weights of the resulting high‐order tensor's TT ranks. To make our approach robust, we add two mode‐unfolding regularization terms to enhance the model for the purpose of exploring spatio‐temporal continuity and self‐similarity of the underlying tensors. Also, we propose an implementable algorithm to solve the proposed optimization model in the sense that each subproblem enjoys a closed‐form solution. A series of numerical results demonstrate that our approach works well on recovering color images and videos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.