Abstract

Color is an essential feature in histogram-based matching. This can be extracted as statistical data during the comparison process. Although the applicability of color features in histogram-based techniques has been proven, position information is lacking during the matching process. We present a conceptually simple and effective method called multiple-layered absent color indexing (ABC-ML) for template matching. Apparent and absent color histograms are obtained from the original color histogram, where the absent colors belong to low-frequency or vacant bins. To determine the color range of compared images, we propose a total color space (TCS) that can determine the operating range of the histogram bins. Furthermore, we invert the absent colors to obtain the properties of these colors using threshold . Then, we compute the similarity using the intersection. A multiple-layered structure is proposed against the shift issue in histogram-based approaches. Each layer is constructed using the isotonic principle. Thus, absent color indexing and multiple-layered structure are combined to solve the precision problem. Our experiments on real-world images and open data demonstrated that they have produced state-of-the-art results. Moreover, they retained the histogram merits of robustness in cases of deformation and scaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.