Abstract
We analyze a tactical freight railway crew scheduling problem, when train drivers must be informed several weeks before operations about the start and end times and locations of their duties. Between informing the train drivers and start of operations, trip demand changes due to cancellations, new bookings, and reroutings of trains, which might result in mismatches between train driver capacity at a location and demand. We analyze an approach that incorporates uncertain trip demand as scenarios, such that the start and end times and locations of the duties of a crew schedule are recoverable robust against deviations in trip demand. We develop a column generation solution method that dynamically aggregates trips to duties and decomposes the subproblems into smaller, computationally tractable instances. Our model determines duty frames that cover duties in many scenarios, creating recoverable robust crew schedules. We test our model on three real data sets of a major European freight railway operator. Our results show that our schedules are considerably more recoverable robust than those of the nominal solution, resulting in smaller mismatches between train driver capacity and demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.