Abstract

In this article, we address the synchronization problem of networked uncertain Euler-Lagrange systems subject to disturbances, network delays, and uniformly connected switching networks. Compared with existing works, the current problem setting is more practical and technically more challenging. First, to tackle the disturbances under switching networks, we establish one lemma to show the convergence of a piecewise continuous function. Then, we establish the input-to-state stability (ISS) property of a class of perturbed time-delay systems to enable the distributed estimation of the system matrix and the output matrix of the leader system through delayed and switched network communication. Based on the certainty equivalence principle, we design an adaptive distributed control law. The synchronization control of four three-link cylindrical arms is used to demonstrate the effectiveness of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call