Abstract

This paper presents a robust algorithm to recover high-frequency information from compressed low-resolution (LR) video sequences. Previous super-resolution (SR) approaches have succeeded in resolution enhancement when the motion in the LR sequence is simple. However, when the motion is complex, new artifacts will be introduced in the SR processing. To solve this problem, we develop a robust Bayesian SR algorithm with two steps. We first isolate the frames individually to get their corresponding initial SR solutions within the Bayesian framework. Secondly, with a robust cost function to reject outliers and noise, final SR images are achieved with multiple LR frames. In the mean time, we impose the constraint that the distribution of high-resolution (HR) image gradient should be equal to one of the corresponding decompressed LR images to sharpen the edges of the results. As a result of these steps, we are able to produce high-quality deblurred results, which show a suppressing of high-frequency artifacts and less ringing artifacts, with a higher peak signal-to-noise ratio (PSNR).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.