Abstract

Spatial-mode projective measurements could achieve super-resolution in remote sensing and imaging, yet their performance is usually sensitive to the parameters of the target scenes. We propose and demonstrate a robust classifier of close-by light sources using optimized mode projection via nonlinear optics. Contrary to linear-optics based methods using the first few Hermite–Gaussian (HG) modes for the projection, here the projection modes are optimally tailored by shaping the pump wave to drive the nonlinear-optical process. This minimizes modulation losses and allows high flexibility in designing those modes for robust and efficient measurements. We test this classifier by discriminating one light source and two sources separated well within the Rayleigh limit without prior knowledge of the exact centroid or brightness. Our results show a classification fidelity of over 80% even when the centroid is misaligned by half the source separation, or when one source is four times stronger than the other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.