Abstract

Most recent works in device-to-device (D2D) underlay communications focus on the optimization of either power or channel allocation to improve the spectral efficiency, and typically consider uplink and downlink separately. Further, several of them also assume perfect knowledge of channel-state-information (CSI). In this paper, we formulate a joint uplink and downlink resource allocation scheme, which assigns both power and channel resources to D2D pairs and cellular users in an underlay network scenario. The objective is to maximize the overall network rate while maintaining fairness among the D2D pairs. In addition, we also consider imperfect CSI, where we guarantee a certain outage probability to maintain the desired quality-of-service (QoS). The resulting problem is a mixed integer non-convex optimization problem and we propose both centralized and decentralized algorithms to solve it, using convex relaxation, fractional programming, and alternating optimization. In the decentralized setting, the computational load is distributed among the D2D pairs and the base station, keeping also a low communication overhead. Moreover, we also provide a theoretical convergence analysis, including also the rate of convergence to stationary points. The proposed algorithms have been experimentally tested in a simulation environment, showing their favorable performance, as compared with the state-of-the-art alternatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.