Abstract

A novel subspace (SS) based blind channel estimation method for multi-input, multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed in this work. With an appropriate re-modulation on the received signal blocks, the SS method can be effectively applied to the cyclic prefix (CP) based MIMO-OFDM system when the number of the receive antennas is no less than the number of transmit antennas. These features show great compatibility with the coming fourth generation (4G) wireless communication standards as well as most existing single-input single-output (SISO) OFDM standards, thus allow the proposed algorithm to be conveniently integrated into practical applications. Compared with the traditional SS method, the proposed algorithm exhibits many advantages such as robustness to channel order over-estimation, capability of guaranteeing the channel identifiability etc. Analytical expressions for the mean-square error (MSE) and the approximated Cramer-Rao bound (ACRB) of the proposed algorithm are derived in closed forms. Various numerical examples are conducted to corroborate the proposed studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call