Abstract
Subspace clustering algorithms are usually used when processing high-dimensional data, such as in computer vision. This paper presents a robust low-rank representation (LRR) method that incorporates structure constraints and dimensionality reduction for subspace clustering. The existing LRR and its extensions use noise data as the dictionary, while this influences the final clustering results. The method proposed in this paper uses a discriminant dictionary for matrix recovery and completion in order to find the lowest rank representation of the data matrix. As the algorithm performs clustering operations in low-dimensional latent space, the computational efficiency of the algorithm is higher, which is also a major advantage of the proposed algorithm in this paper. A large number of experiments on standard datasets show the efficiency and effectiveness of the proposed method in subspace clustering problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.