Abstract

The utility of using inertial data for the structure-from-motion (SfM) problem is addressed. We show how inertial data can be used for improved noise resistance, reduction of inherent ambiguities, and handling of mixed-domain sequences. We also show that the number of feature points needed for accurate and robust SfM estimation can be significantly reduced when inertial data are employed. Cramér-Rao lower bounds are computed to quantify the improvements in estimating motion parameters. A robust extended-Kalman-filter-based SfM algorithm using inertial data is then developed to fully exploit the inertial information. This algorithm has been tested by using synthetic and real image sequences, and the results show the efficacy of using inertial data for the SfM problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.