Abstract
Abstract In this study, the zonal mass streamfunction Ψ, which depicts intuitively the tropical Pacific Walker circulation (PWC) structure characterized by an enclosed and clockwise rotation cell in the zonal–vertical section over the equatorial Pacific, was used to study the changes of PWC spatial structure during 1979–2012. To examine the robustness of changes in PWC characteristics, the linear trends of PWC were evaluated and compared among the current seven sets of reanalysis data, along with a comparison to the trends of surface climate variables. The spatial pattern of Ψ trend exhibited a strengthening and westward-shifting trend of PWC in all reanalysis datasets, with the significantly positive Ψ dominating the western Pacific and negative Ψ controlling the eastern Pacific. This kind of change is physically in agreement with the changes of the sea level pressure (SLP), surface winds, and precipitation derived from both the reanalyses and independent observations. Quantitative analyses of the changes in the PWC intensity and western edge, defined based on the zonal mass streamfunction, also revealed a robust strengthening and westward-shifting trend among all reanalysis datasets, with a trend of 15.08% decade−1 and 3.70° longitude decade−1 in the ensemble mean of seven sets of reanalysis data, with the strongest (weakest) intensification of 17.53% decade−1 (7.96% decade−1) in the Twentieth Century Reanalysis (NCEP-2) and largest (smallest) westward shift of −4.68° longitude decade−1 (−2.55° longitude decade−1) in JRA-55 (JRA-25). In response to the recent observed La Niña–like anomalous SST forcing, the ensemble simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), with 26 models in the ensemble, reasonably reproduced the observed strengthening and westward-shifting trend of PWC, implying the dominant forcing of the La Niña–like SST anomalies to the recent PWC change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.