Abstract

For uncertain systems containing both deterministic and stochastic uncertainties, we consider two problems of optimal filtering. The first is the design of a linear time-invariant filter that minimizes an upper bound on the mean energy gain between the noise affecting the system and the estimation error. The second is the design of a linear time-invariant filter that minimizes an upper bound on the asymptotic mean square estimation error when the plant is driven by a white noise. We present filtering algorithms that solve each of these problems, with the filter parameters determined via convex optimization based on linear matrix inequalities. We demonstrate the performance of these robust algorithms on a numerical example consisting of the design of equalizers for a communication channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.