Abstract
Large-scale tissue deformation which is fundamental to tissue development hinges on local cellular rearrangements, such as T1 transitions. In the realm of the multi-phase field model, we analyse the statistical and dynamical properties of T1 transitions in a confluent monolayer. We identify an energy profile that is robust to changes in several model parameters. It is characterized by an asymmetric profile with a fast increase in energy before the T1 transition and a sudden drop after the T1 transition, followed by a slow relaxation. The latter being a signature of the fluidity of the cell monolayer. We show that T1 transitions are sources of localised large deformation of the cells undergoing the neighbour exchange, and they induce other T1 transitions in the nearby cells leading to a chaining of events that propagate local cell deformation to large scale tissue flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.