Abstract

This article deals with two important issues in digital filter implementation: roundoff noise and limit cycles. A novel class of robust state-space realizations, called normal realizations, is derived and characterized. It is seen that these realizations are free of limit cycles. Another interesting property of the normal realizations is that they yield a minimal error propagation gain. The optimal realization problem, defined as to find those normal realizations that minimize roundoff noise gain, is formulated and solved analytically. A design example is presented to demonstrate the behavior of the optimal normal realizations and to compare them with several well-known digital filter realizations in terms of minimizing the roundoff noise and the error propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.