Abstract

The disadvantages of fuel cell systems, such as their high cost, lack of reactivity, and inability to collect energy when the fuel cell vehicle is braking, can be overcome by hybridization with storage devices such the battery or the supercapacitors, which is capable of doing so. The energy management system is regarded as an important technique for the hybrid system. Its primary function is to autonomously identify the appropriate quantity of energy that will be supplied by the hybrid source to meet the demand in terms of the load's energy requirements. The primary purpose in this work is the design and validation of an energy management technique based on the state machine and the passivity-based control to manage and control the energy flow of a hybrid fuel cell vehicle's power source, with a fuel cell system serving as the primary source of power and batteries and supercapacitors serving as the secondary sources of power. The results of MATLAB simulations show that the proposed strategy works as expected and the control system has robust dynamic features. Consequently, the passivity-based control makes possible to globally control the hybrid system which has been presented by a state space model in order to reach a set of stable equilibria. Whereas, the state machine is efficient in terms of performance, easy to implement, and provides ideal balance between the amount of energy that is generated and the amount that is consumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.