Abstract

We consider a novel method to design H∞ observers for a class of uncertain nonlinear systems subject to unknown inputs. First, the main system dynamics are rewritten as an augmented system with state vector including both the state vector of the main system and the unknown inputs. Then, we design a H∞ reduced-order observer to estimate both state variables and unknown inputs simultaneously. Based on a Lyapunov functional, we derive a sufficient condition for existence of the designed observer which requires solving a nonlinear matrix inequality. To facilitate the observer design, the achieved condition is formulated in terms of a set of linear matrix inequalities (LMI). By extending the proposed method to a multiobjective optimization problem, the maximum bound of the uncertainty and the minimum value of the disturbance attenuation level are found. Finally, the proposed observer is illustrated with an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.