Abstract
Autonomous Underwater Vehicles (AUVs) are designed to operate in complex external environments, making fault detection crucial to overall safety. While a general kinetic model can be applied to describe the dynamics of an AUV, obtaining accurate parameters for the dynamic model is challenging due to the complexity of the outline structure of the AUV and external influence factors. In addition, environmental influence on model parameters is usually time-varying and stochastic, which is different from simple model uncertainties. In this paper, we model external perturbations as stochastic model uncertainties that share some characteristics with noise. We also apply an improved robust filtering method to estimate system states and alleviate the effects of stochastic system uncertainties. Based on the proposed filtering approach, a residual signal is computed based on reconstruction errors of the observations and smoothed using a sliding-window technique, which is directly applied to the fault detection problem. Finally, simulation experiments demonstrate the effectiveness of the proposed method in detecting actuator faults in several cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.