Abstract

In many engineering problems, modelling the state and output derivative variables in reciprocal state space form can be generated more easily than in standard state space one. The formulation of a robust [Formula: see text] control problem using feedback principle for continuous Lipschitz nonlinear systems with uncertainties in reciprocal state space is presented in this article. In contrast to the existing approaches, the considered model is affected by unknown disturbances, parameter uncertainties and derivative Lipschitz nonlinearities. The asymptotic stability based on the proper Lyapunov functions of the closed-loop system is guaranteed. The [Formula: see text] control design resolution problem is ensured through the linear matrix inequality technique, the lemmas and the use of new variables with S-procedure. The performance of the proposed approach is shown through the experimental results using real-time implementation with a digital signal processing device (DSpace DS 1104).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.