Abstract

This paper focuses on the design of a low order robust stabilizer for the tracking/disturbance rejection problem based on the internal model principle in the time-varying setting and its application to the hydraulic pressure tracking with varying frequency. The problem of this kind known as output regulation generally consists of two major parts: internal model unit construction and stabilizer design. While the construction of the time-varying internal model unit is non-trivial by itself and a very recent research outcome enables its synthesis for a class of linear time-varying systems, the effective stabilization of the augmented system (internal model unit and plant) for practical applications remains a challenge. This is due to the need to stabilize the high order time-varying augmented system using a low order stabilizer in a robust fashion and with desirable transient performance. While directly applying the stabilization approaches for a general LTV system will result in a high order stabilizer, a new method is proposed in this paper that overcomes this bottleneck by taking advantage of the unique structure of the internal model based control system. Instead of using a dynamic stabilizer with high order, this approach uses a sequence of time-varying gains that are directly injected into the internal model unit. A critical issue addressed is how to avoid the non-convex optimization associated with the time-varying gain synthesis and then convert the stabilizer design into a series of Linear Matrix Inequalities (LMIs). The proposed control approach is then demonstrated on an electrohydraulic system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.