Abstract

Abstract Stabilization of neutral systems with state delay is considered in the presence of uncertainty and input limitations in magnitude. The proposed solution is based on simultaneously characterizing a set of stabilizing controllers and the associated admissible initial conditions through the use of a free weighting matrix approach. From this mathematical characterization, state feedback gains that ensure a large set of admissible initial conditions are calculated by solving an optimization problem with LMI constraints. Some examples are presented to compare the results with previous approaches in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.