Abstract

This paper studies the robust stabilization problem of a class of uncertain Lipschitz nonlinear systems with infinite distributed input delays. A novel robust predictor feedback controller is developed and the controller gain can be obtained via solving a linear matrix inequality. It is shown that the proposed robust predictor feedback controller can globally exponentially stabilize the concerned uncertain nonlinear system with infinite distributed input delays. The key to the proposed approach is the development of several new quadratic Lyapunov functionals. The obtained results are extended to the case of systems with both multiple constant input delays and infinite distributed input delays. It is noted that the obtained results include some existing results on systems with constant input delays or bounded distributed input delays as special cases. Finally, two examples of Chua’s circuit and spacecraft rendezvous system are presented to illustrate the effectiveness of the proposed robust controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.