Abstract

Based on the variable structure system (VSS) theory, we develop a fuzzy control system design method for a class of uncertain nonlinear multivariable systems that can be represented by a Takagi-Sugeno fuzzy model. We make the first attempt to relax the restrictive assumption that each nominal local system model shares the same input channel, which is required in the traditional VSS-based fuzzy control design methods. As the local controller we use a sliding mode controller with a switching feedback control term. In terms of linear matrix inequalities (LMIs), we derive a sufficient condition for the existence of linear sliding surfaces guaranteeing asymptotic stability of the reduced-order equivalent sliding mode dynamics. We present an LMI characterization of such sliding surfaces. We also give an LMI-based algorithm to design the switching feedback control term so that a stable sliding motion is induced in finite time. Finally, we give a numerical design example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.