Abstract

This paper is concerned with the problem of constraint control for cooperative adaptive cruise control (CACC) with input saturation and input-additive uncertainties. An integrated longitudinal kinematic model of CACC system including vehicle model and constant time headway is established taking into account input saturation and input-additive uncertainties. According to the system’s robustness requirements under input saturation, the saturation control method is introduced. In order to achieve robust global stabilization of the system, a low-gain state feedback control law is designed by using linear low-gain feedback and gain scheduling. Meanwhile, in order to avoid the saturation of the control system, the low gain parameter [Formula: see text] is introduced into the controller design. Finally, the simulation of homogeneous and heterogeneous platoons is carried out by MATLAB/Simulink, which verifies the feasibility and effectiveness of the designed controller. Compared with the SMC controller, saturation controller successfully suppresses the acceleration amplification in the process of propagation along the vehicle platoon, avoids actuator saturation and realizes the stability of CACC system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call