Abstract

In this paper, a robust nonlinear control design strategy to solve the stabilization problem of an inverted pendulum system subject to parametric uncertainties and unmodeled dynamics is proposed. The control strategy is based on the combination of Amplified Linear Quadratic Regulator (ALQR) control with a high-order sliding mode algorithm. Differently from the standard ALQR controller, parametric uncertainties are considered in the design process. Linear matrix inequality conditions are provided to deal with the computational issues arising with the inclusion of this feature. A sliding mode term is added to the ALQR control law to mitigate the effect of unmodeled dynamics, such as dry friction, neglected in the system model. In order to prevent the occurrence of chattering, a high-order sliding mode approach was used, namely the second-order super-twisting algorithm. The effectiveness of the proposed strategy is evaluated through a real experiment performed using the Quanser inverted pendulum plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.