Abstract

AbstractIn this paper, a block decomposition procedure for sliding mode control of a class of nonlinear systems with matched and unmatched uncertainties, is proposed. Based on the nonlinear block control principle, a sliding manifold design problem is divided into a number of sub‐problems of lower dimension which can be solved independently. As a result, the nominal parts of the sliding mode dynamics is linearized. A discontinuous feedback is then used to compensate the matched uncertainty. Finally, a step‐by‐step Lyapunov technique and a high gain approach is applied to obtain hierarchical fast motions on the sliding manifolds and to achieve the robustness property of the closed‐loop system motion with respect to unmatched uncertainty. Copyright © 2002 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call