Abstract
In this paper robust stability of state space models with respect to real parametric uncertainty is considered. Specifically, a new class of parameter-dependent quadratic Lyapunov functions for establishing stability of a polytope of matrices is introduced, i.e., the Homogeneous Polynomially Parameter-Dependent Quadratic Lyapunov Functions (HPD-QLFs). The choice of this class, which contains parameter-dependent quadratic Lyapunov functions whose dependence on the uncertain parameters is expressed as a polynomial homogeneous form, is motivated by the property that a polytope of matrices is stable if and only there exists a HPD-QLF. The main result of the paper is a sufficient condition for determining the sought HPD-QLF, which amounts to solving linear matrix inequalities (LMIs) derived via the complete square matricial representation (CSMR) of homogeneous matricial forms and the Lyapunov matrix equation. Numerical examples are provided to demonstrate the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.