Abstract

In this paper, the stability of a Networked Control System (NCS) with time-varying delays is analyzed. A discrete-time state-space model is used to analyze the dynamics of the NCS. The delay is introduced by the network itself and is assumed to be upperbounded by a fraction of the sample-time. A typical motion control example is presented in which the time-variation of the delay results in an unstable system, although for each fixed delay the system is stable. Conditions in terms of LMIs are presented guaranteeing the robust asymptotic stability of the discrete-time system, given bounds on the uncertain time-varying delay. Moreover, it is shown that the robust stability conditions also guarantee asymptotic stability of the intersample behavior. Additionally, LMIs are presented to synthesize a feedback controller that stabilizes the system for the uncertain time-varying delay. The results are illustrated on an example concerning a mechanical model of a motor driving a roller in a printer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call