Abstract

This study investigates stability problems related to discrete-time randomly switched genetic regulatory networks (GRNs) with time-varying delays. A new discrete-time randomly switched GRN model with known sojourn probabilities is proposed. By utilizing the discrete Wirtinger-based inequality and a newly proposed constraint condition on the feedback regulatory function, which have not been fully used in stability analysis of discrete-time GRNs, we establish delay-dependent stability and robust stability criteria. These criteria possess the sojourn probabilities of randomly switched GRNs. Two numerical examples are provided to demonstrate the effectiveness of the established results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.