Abstract

State-of-the-art grid-connected converters can be classified as “grid-following,” meaning that they require a dedicated synchronization unit in order to inject active and reactive currents into the grid. Recently, other converter control concepts have been proposed in the literature, such as the synchronverter, which can instead achieve synchronization without a dedicated unit and, within its physical limitations, make the converter behave as an ideal voltage source. Since it should be expected that the grid-connected converters having different control philosophies will coexist for many years, in this article, the interaction among the converters operating nearby are addressed. First, the component connection method (CCM) technique is introduced, as a means for obtaining the state-space representation of a complex system with several units operating nearby. Due to the complexity of the grid and the difficulty in obtaining its exact representation, $\mu $ -analysis is adopted in this article for assessing the robust stability of the converter under different operating conditions, according to a defined set of plant uncertainties. Simulation results and experimental tests in a laboratory environment by means of a power hardware-in-the-loop (PHIL) test bench are performed to demonstrate the validity of the presented analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.