Abstract
A wide variety of problems in system and control theory can be formulated or reformulated as convex optimization problems involving linear matrix inequalities (LMIs), that is, constraints requiring an affine combination of symmetric matrices to be positive semidefinite. For a few very special cases, there are analytical solutions to these problems, but in general LMI problems can be solved numerically in a very efficient way. Thus, the reduction of a control problem to an optimization problem based on LMIs constitutes, in a sense, a solution to the original problem. The objective of this article is to provide a tutorial on the application of optimization based on LMIs to robust control problems. In the first part of the article, we provide a brief introduction to optimization based on LMIs. In the second part, we describe a specific example, that of the robust stability and performance analysis of uncertain systems, using LMI optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.